import random
from upstash_vector import Index
index = Index.from_env()
# Generate a random vector for similarity comparison
dimension = 128 # Adjust based on your index's dimension
query_vectors = [[random.random() for _ in range(dimension)] for _ in range(2)]
# Execute the query
query_results = index.query_many(
queries=[
{
"vector": query_vectors[0],
"include_metadata": True,
"include_data": True,
"include_vectors": False,
"top_k": 5,
"filter": "genre = 'fantasy' and title = 'Lord of the Rings'",
},
{
"vector": query_vectors[1],
"include_metadata": False,
"include_data": False,
"include_vectors": True,
"top_k": 3,
"filter": "genre = 'drama'",
},
]
)
for i, query_result in enumerate(query_results):
print(f"Query-{i} result:")
# Print the query result
for result in query_result:
print("Score:", result.score)
print("ID:", result.id)
print("Vector:", result.vector)
print("Metadata:", result.metadata)
print("Data:", result.data)